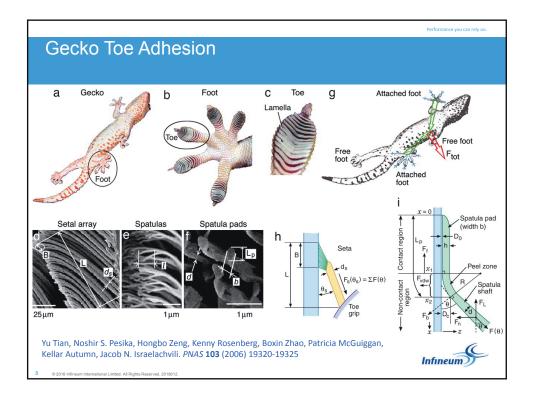
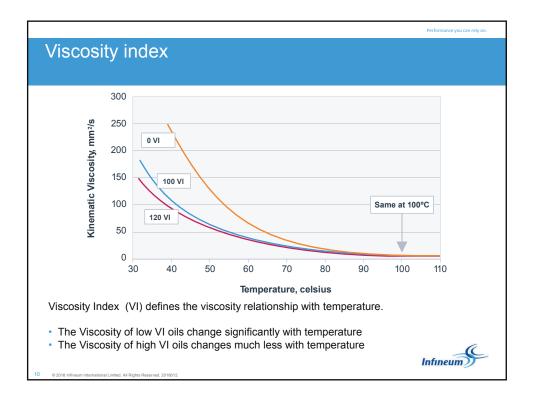
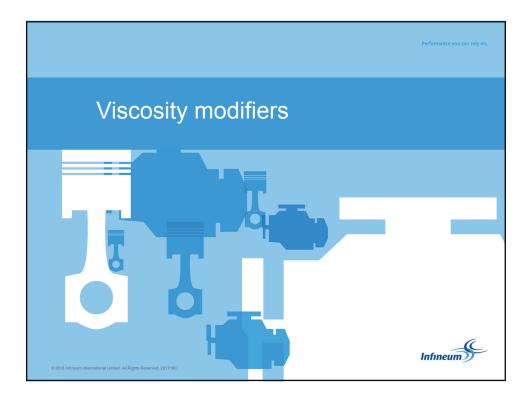
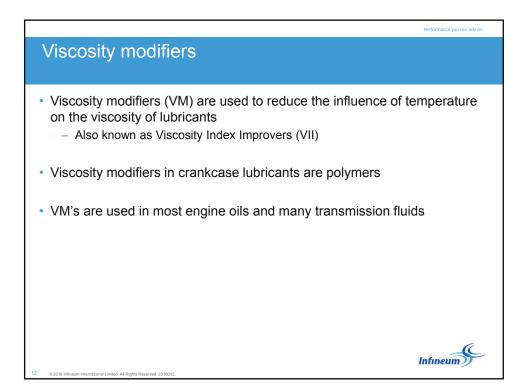

	Performance you can rely on.
Outline	
Viscosity	
 Definition & Terminology 	
 Temperature Dependence 	
Viscosity Modifiers	
– Function	
 Thickening Efficiency 	
- Shear-Thinning	
 Types/Chemistry 	
Pour Point Depressants	
SAE Viscosity Grades	
Appendix	
 Viscosity measurement methods 	
	C.
2 © 2018 Inlineum International Limited All Rights Reserved. 2018012.	Infineum

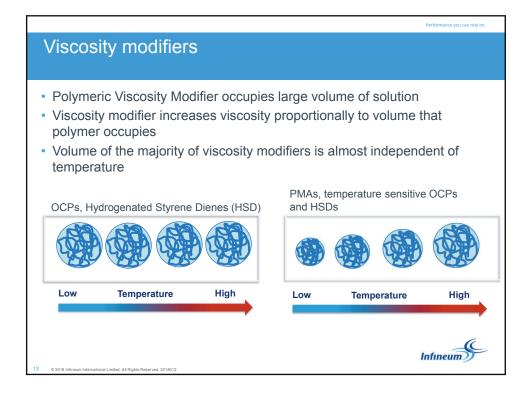


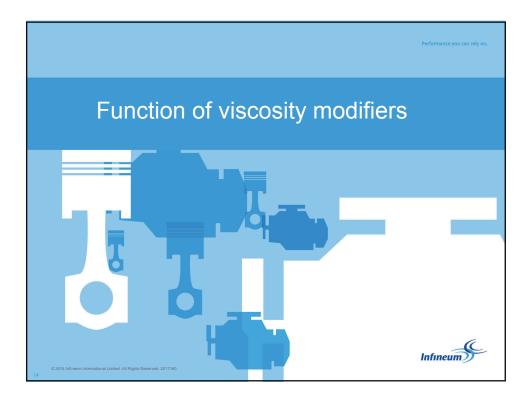
Performance you can rely on.
Viscosity
 Dynamic viscosity is resistance to flow of a fluid
 Defined as shear stress divided by shear rate (how hard you push it divided by how fast it slides)
 Units of dynamic viscosity:
Pascal seconds (Pa-s)
 mPa-s = 1cP (CentiPoise)
Dynamic viscosities are usually measured under high shear conditions:
 For example, the cone on plate or cylinder viscometer
 Kinematic viscosity is the dynamic viscosity divided by the fluid density.
 The physical principle of measurement is based on the rate at which a fluid flows under gravity through a capillary tube.
 Usually measured under low shear conditions.
 Units of kinematic viscosity:
 mm²/s = CentiStoke (cSt)
Famous scientists who contributed to viscosity fundamentals Infineum
4 © 2018 Inlineum International Limited. All Rights Reserved. 2018012.

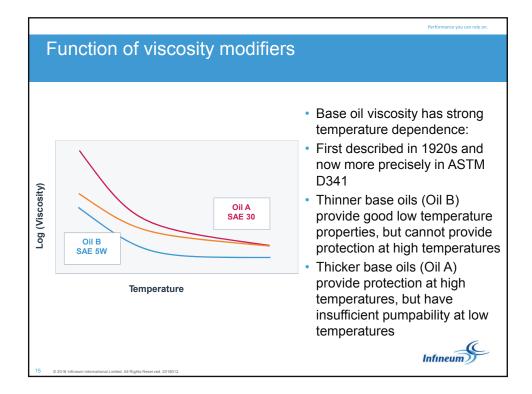


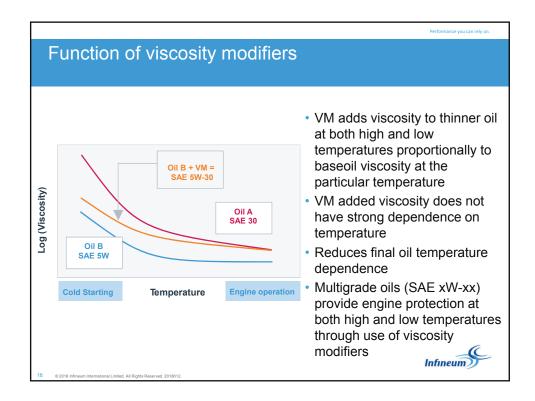


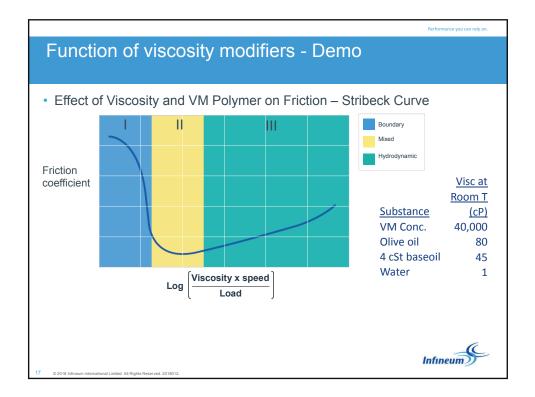

Performance you can rely on.

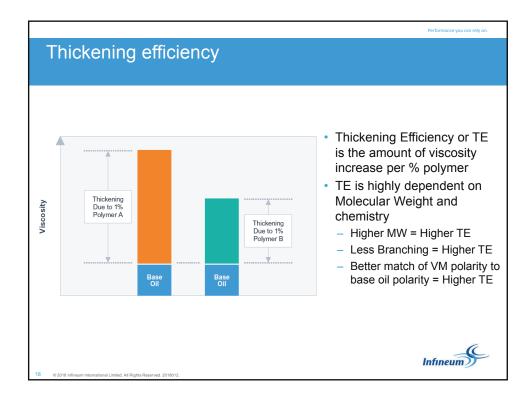

Viscosity of materials

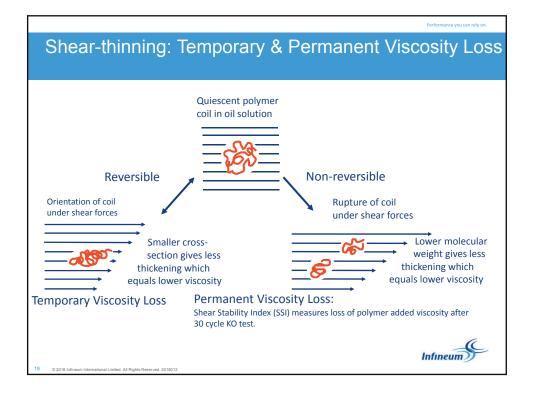

Substance	Viscosity at room temp (mPa-s or cP)	
Ketchup	100,000	
VM Concentrate	40,000	
Molasses	8,000	
Maple syrup	3,000	
Motor oil (SAE 8 – SAE 40 grades)	25 - 350	
Olive oil	80	
Group III base oil 4 cSt	45	
Mercury	2	
Water	1	
Gasoline	0.5	
Acetone	0.3	
Air	0.018	

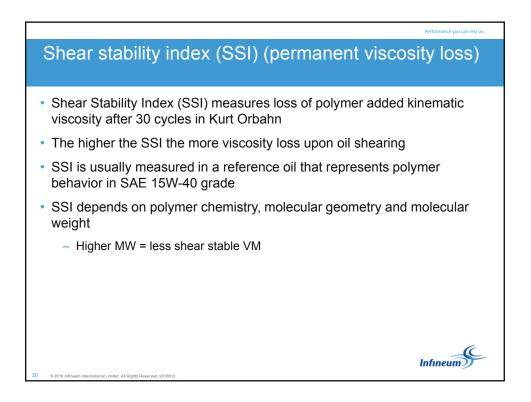


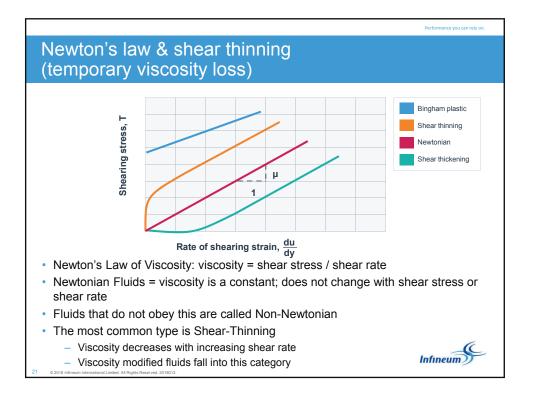


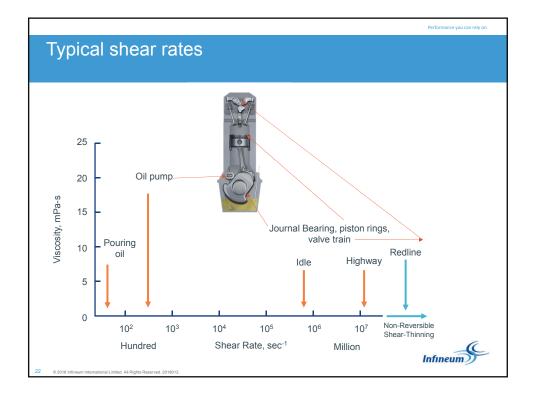


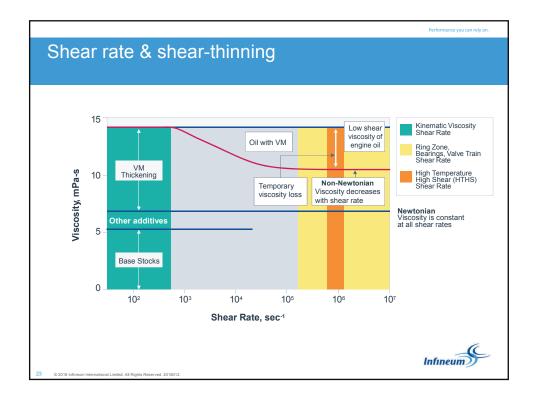


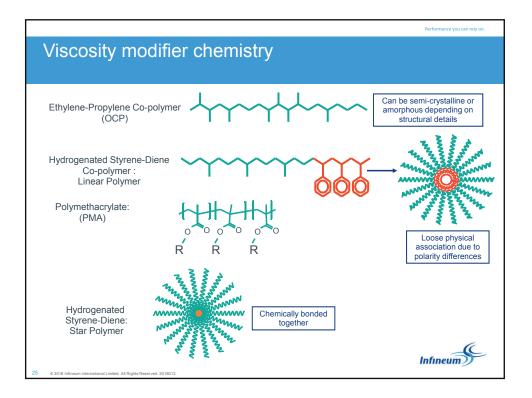


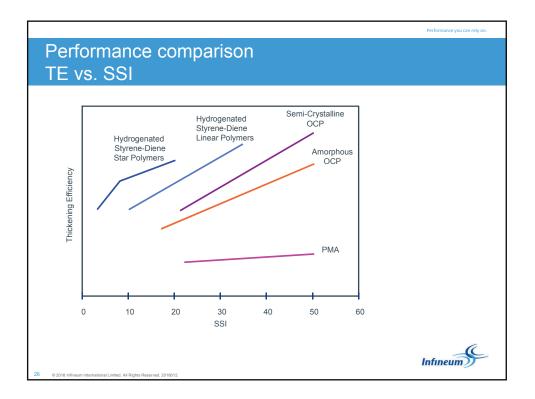


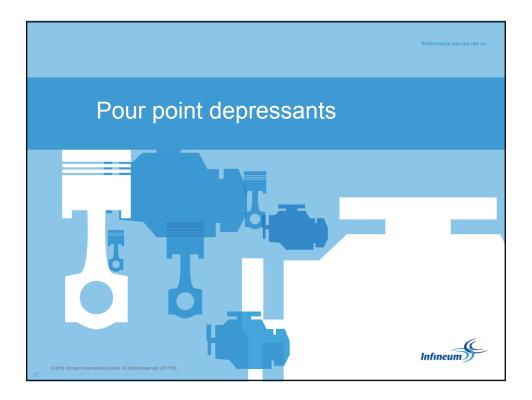


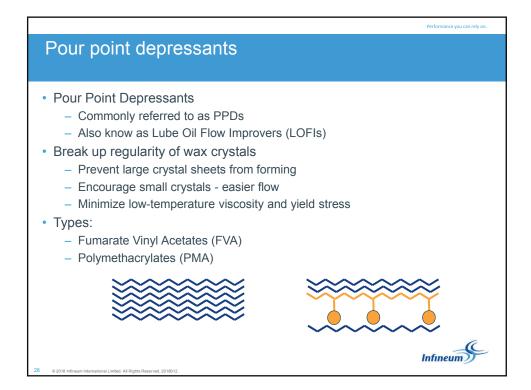


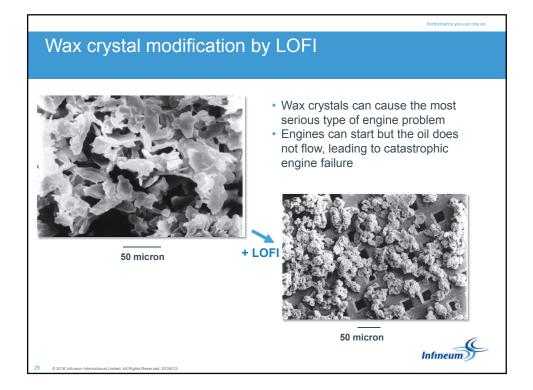


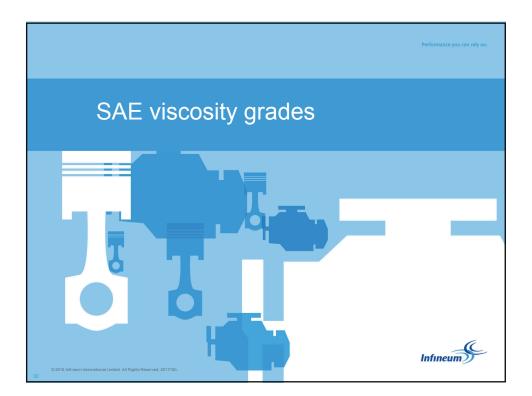


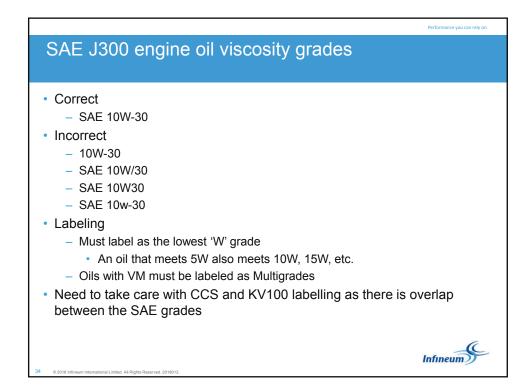


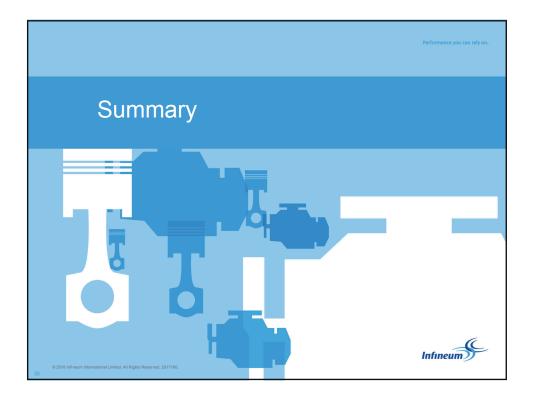




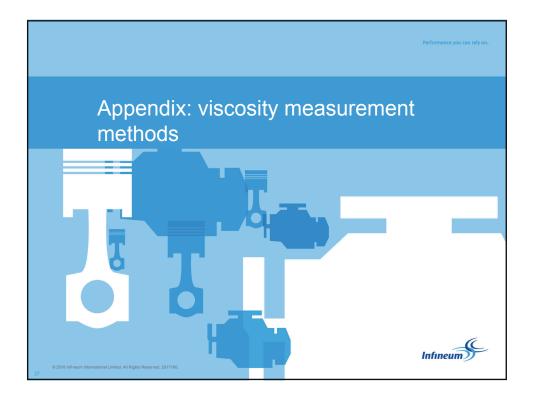

	Performance you can rely on.
Viscosity modifier types	
Common types	
 Ethylene-Propylene Co-polymer (OCP) 	
Semi-crystalline	
Amorphous	
 Hydrogenated Styrene-diene Co-polymer (HSD) 	
 Polymethacrylate (PMA) 	
 Factors that need to be considered when selecting VM 	
 Cost to achieve required thickening (Cost vs. TE) 	
 Shear Thinning Properties 	
 Low Temperature Properties 	
Other performance harms/credits	
	(C)
24	Infineum
24 © 2018 Infineum International Limited. All Rights Reserved. 2018012.	

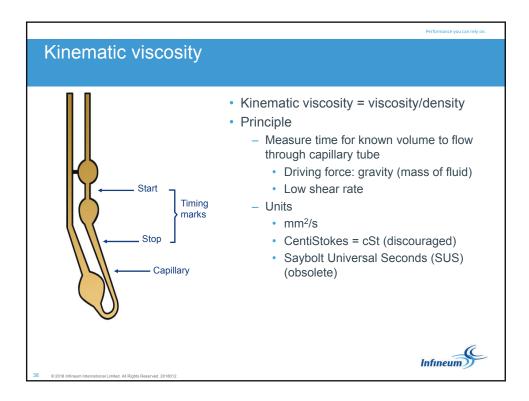


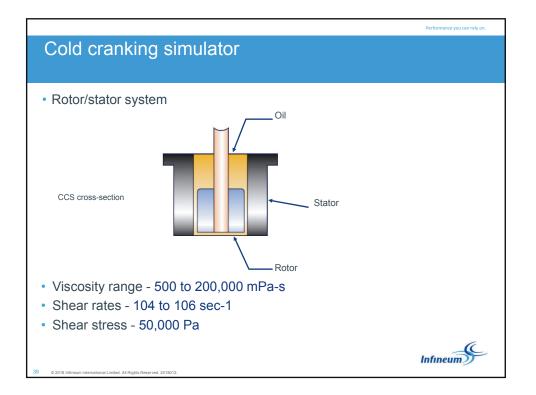


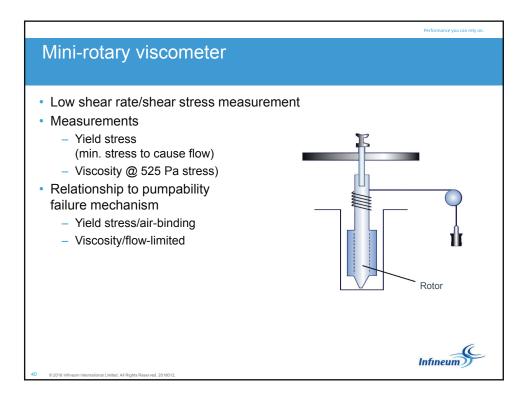


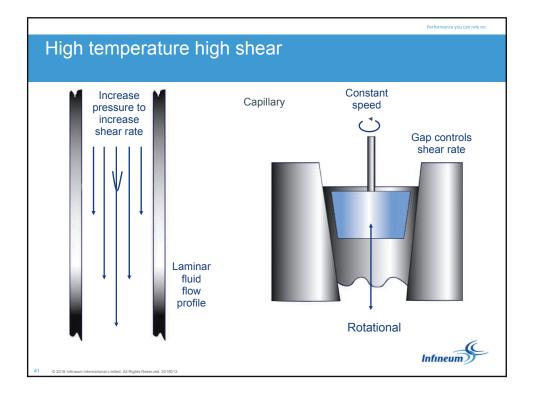
					Performance you can rely on.	
SAE J300 engine oil viscosity grades (issued January 2015)						
SAE Grade	CCS mPa-s, Max	MRV mPa-s, Max w/No Yield Stress	Visc	matic cosity C mm²/s Max	HTHS @ 10 ⁶ Sec ⁻¹ at 150 C mPa-s, Min	
0W	6200 at -35°C	60 000 at -40°C	3.8	_	_	
5W	6600 at -30°C	60 000 at -35°C	3.8	_	_	
10W	7000 at -25°C	60 000 at -30°C	4.1	-	_	
15W	7000 at -20°C	60 000 at -25°C	5.6	-	_	
20W	9500 at -15°C	60 000 at -20°C	5.6	-	_	
25W	13000 at -10°C	60 000 at -15°C	9.3	-	-	
8	_	_	4.0	<6.1	1.7	
12	_	_	5.0	<7.1	2.0	
16	_	_	6.1	<8.2	2.3	
20	_	_	6.9	<9.3	2.6	
30	_	_	9.3	<12.5	2.9	
40	_	_	12.5	<16.3	3.5 ⁽¹⁾	
40	_	- /	12.5	<16.3	3.7(2)	
50	_	- /	16.3	<21.9	3.7	
60	_	- /	21.9	<26.1	3.7	
	0W Multigrades – Changed fr , 25W Multigrades and SAE 4		5.6		Infineum	


			Performance you can rely o
sity n	neasurement	methods	
Shear	Performance	Instrument	ASTM Method
Low	Oil Consumption Quality Control	Kinematic Viscometer	D 445
High	Cold Starting	Cold Cranking Simulator (CCS)	D 5293
Low	Cold Pumping	Mini-Rotary Viscometer (MRV)	D 4684
High	Wear/Fuel Economy	Tapered Bearing Simulator (TBS) Tapered Plug Viscometer (TPV) Multi-Cell Capillary (MCC)	D 4683 D 4741 D 5481
			Infineum
	Shear Low High Low	ShearPerformanceLowOil Consumption Quality ControlHighCold StartingLowCold Pumping	Low Oil Consumption Quality Control Kinematic Viscometer High Cold Starting Cold Cranking Simulator (CCS) Low Cold Pumping Mini-Rotary Viscometer (MRV) High Wear/Fuel Economy Tapered Bearing Simulator (TBS) Tapered Plug Viscometer (TPV)


							Performance you can rely on.	
S	SAE viscosity grades							
		5						
	60	0W-60	5W-60	10W-60	15W-60	20W-60	25W-60	
	50	0W-50	5W-50	10W-50	15W-50	20W-50	25W-50	
rade	40	0W-40	5W-40	10W-40	15W-40	20W-40	25W-40	
Summer' Grade	30	0W-30	5W-30	10W-30	15W-30	20W-30	25W-30	
- Mu	20	0W-20	5W-20	10W-20	15W-20	20W-20		
Ŋ,	16	0W-16	5W-16					
Ī	12	0W-12						
Ī	8	0W-8						
[0W	5W	10W	15W	20W	25W	
-				'Winter' Grade	e		•	
Straight Grades								
5	Some commo	n viscosity grades f	or engine oils					
	•SAE 0W-X gi	rades typically nee	d synthetic base sto	ocks			Infineum	
© 2018 Infineum International Limited. All Rights Reserved. 2018012.								






	Performance you can rely on.
Summary	
 Viscosity is a measure of a fluid's resistance to flow 	
 It depends strongly on temperature 	
 And it can depend on shear rate 	
 Viscosity modifiers in lubricants: 	
 Are used to reduce the influence of temperature on lubricant visco 	osity
 Chemical structure and molecular weight affect performance and 	efficiencies
 Exhibit temporary and permanent viscosity loss due to shear 	
 Three common types: OCPs, Hydrogenated Styrene-diene Co-po 	lymer, PMAs
 Oil formulators must balance viscometric requirements, engine pe and cost 	rformance
 Viscosity grades are defined by SAE J300 	
 "Oils which are formulated with polymeric viscosity index improved purpose of making them multiviscosity-grade products are non-Ne and must be labeled with the appropriate multiviscosity grade". Source: SAE J300 	
36 o 2018 Infineum International Limited. All Rights Reserved. 2018012.	nfineum

